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Abstract

We presentMLSolver, a tool for solving the satisfiability and validity problems for modal fixpoint logics.
The underlying technique is based on characterisations of satisfiability through infinite (cyclic) tableaux in
which branches have an inner thread structure mirroring the regeneration of least and greatest fixpoint
constructs in the infinite. Well-foundedness for unfoldings of least fixpoints is checked using deterministic
parity automata. This reduces the satisfiability and validity problems to the problem of solving a parity
game. MLSolver then uses a parity game solver in order to decide satisfiability and derives example
models from the winning strategies in the parity game. Currently supported logics are the modal and
linear-time �-calculi, CTL∗, and PDL (and therefore also CTL and LTL). MLSolver is designed to
allow easy extensions in the form of further modal fixpoint logics.

Keywords: tool support, modal logic, satisfiability checking

1 Introduction

Modal logics are important and very successful tools in various areas in computer

science, philosophy, mathematics etc. They are being used – in various shapes and

forms – in order to specify correct program behaviour (temporal logics, dynamic log-

ics), to model and to reason about knowledge (epistemic logics, description logics),

etc.

Any modal logic inherently faces the issue of expressiveness vs. complexity. On

the one hand, logics are desirably very expressive, on the other hand, they should

come with efficient decision procedures. But naturally, high expressive power entails

high complexity.

Standard modal logic is particularly weak because of the locality aspect of the

diamond and box operators. Since they transfer properties of worlds in a Kripke

structure only to their immediate neighbours, any fixed formula of modal logic

can only assert properties of worlds that depend on a neighbourhood of bounded

size. Very simple properties like reachability – which are vital for some applications

like program specification for instance – therefore cannot be expressed in standard

modal logic and, thus, require stronger operators.
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A generic mechanism that has proved to be successful in extending the expressive

power of modal logics is that of incorporating operators which can be characterised

as solutions to fixpoint equations over modal logic formulas. The modal �-calculus

ℒ� [14] does this in the most explicit form by adding fixpoint quantifiers to standard

modal logic. Similar constructs – possibly in restricted form – are also present in

other logics, for example as the Kleene-star in propositional dynamic logic PDL [8],

as the until operator in temporal logics LTL, CTL, or CTL∗ [20,6,7], as transitive-

closure operators in query languages [27] or in description logics [1], etc.

In any case, the satisfiability and, by duality, validity problems for such logics

are of vital interest for specific problems in their domains of applications because

many of those are in fact instances of the satisfiability problem for example. The

subsumption problem in description logics (decide whether or not a given concept is

contained in another given one), or the question whether or not a program specifi-

cation given in temporal logic is realisable easily reduce to the satisfiability problem

for these logics for instance.

Despite the similarities between various modal logics, tools for their satisfiability

problems usually target a specific logic only. This makes sense because it is easier

and more promising to optimise algorithms for specific rather than general prob-

lems. Furthermore, different communities seem to prefer different methodologies,

for instance the automata-theoretic inclined temporal logic community [29] vs. the

tableaux inclined description logic community [2]. On the other hand, similarities

are not exploited and optimisations found for one logic may not be transferred to

other logics where they may be applicable as well.

One difficulty that is common to satisfiability problems for all modal logics

with fixpoint constructs is the regeneration or unfolding problem for least fixpoints.

While it is sound and complete to unwind a least fixpoint operator according to its

definition once, twice, and any finite number of times in order to build a tableau

or an automaton or some other data structure from the input formula, one must

ensure that such an unwinding does not continue ad infinitum. There are various

ways to ensure this which all boil down to excluding certain cycles in certain graphs.

Incidentally, the same problem occurs in model checking CTL∗ [16,3]. Note

that for logics like CTL, PDL, or the modal �-calculus, satisfaction of a formula

in a state of a transition system can be reduced to satisfaction of subformulas in

states [26]. For CTL∗ this is not the case because of the mixture between state and

path formulas. A CTL∗ model checker usually has to consider satisfaction of a set

of formulas in a state. This introduces the same difficulties that arise with least

fixpoint constructs in satisfiability checking procedures.

In this paper we describe a new tool called MLSolver which primarily provides a

framework for satisfiability and validity checking for various modal fixpoint logics.

It can also be used as a model checker for these logics, albeit not necessarily a

competitive one.
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Fig. 1. A method for solving satisfiability for modal fixpoint logics.

2 The Underlying Theory

2.1 The Framework

MLSolver is a satisfiability and validity checker for various modal fixpoint logics.

Satisfiability of such logics can be characterised through the existence of possibly

infinite tableaux in which nodes are data structures containing formulas. Typically,

these will simply be sets of subformulas of the input formula but this need not be

the case. Also, these tableaux come with a notion of a good infinite branch which

is one that does not contain any least fixpoint construct which regenerates itself

along that branch. A tableau is then a finite graph on which every path starting in

a designated initial node is either good or bad.

In order to distinguish good and bad branches and in particular detect bad

ones we employ automata-theory. Bad branches can be accepted by (a combination

of) nondeterministic finite !-automata which essentially guess the occurrence of

a least fixpoint construct in some tableau node and trace its infinite regeneration.

Automata-theory provides algorithms for the determinisation and complementation

of such automata into automata with a parity condition. The question of the exis-

tence of a tableau is then reduced to the problem of determining for a given node

in a parity game which of the two players has a winning strategy for the game

starting in that node. The nodes of the parity game are nodes which may occur in

a tableau annotated with states of a deterministic parity automaton. Fig. 1 depicts

this method in a diagramm: starting from a modal fixpoint formula, one creates a

nondeterministic automaton and a (finite representation of an) infinite tableau with

internal structure on the branches. The automaton is determinised and the product

of the resulting automaton with the tableau yields a parity game.

The vast majority of modal fixpoint logics can be handled in this way. This has

been shown explicitly for variants of the modal �-calculus including the graded and

the probabilistic �-calculus [4] or for the linear-time �-calculus [5]. It is also im-

plictly present in other work, again for example for ℒ� [18] or for LTL and CTL [15]

which simply do not mention explicitly the possibility of using automata-theoretical

results for the incurring problem of detecting bad branches. It is also easily seen

to be applicable for PDL and therefore also for the description logic AℒCreg [10],
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etc. Furthermore, a technically more involved but still similar construction yields a

satisfiability checker for CTL∗.

2.2 �-Threads

A rule-based tableau system comes with a connection relation which relates a for-

mula in a tableau node to formulas in a predecessing node. This gives rise to an

internal structure of threads in an infinite branch which is an infinite sequence of

connected formulas. Since fixpoint constructs are typically handled through unfold-

ing rules which replace such a construct with a defining fixpoint expression (which

can contain the construct again), an infinite unfolding leads to a thread on a branch.

These threads can now be characterised as �- or �-threads depending on the outer-

most / topmost / dominating type of fixpoint construct that is unfolded infinitely

often on this thread.

Next, one considers rule applications of this tableau system as an alphabet for

a nondeterministic automaton Athread which accepts all infinite sequences of rule

applications (i.e. encoded tableau branches) which contain a �-thread.

2.3 Determinisation and Complementation of !-Automata

Remember that a tableau is a graph in which no path is bad in the sense that it con-

tains a �-thread. Thus, it should be obvious that complementation of !-automata

is needed in such a decision procedure because the nondeterministic automata men-

tioned above accept bad branches. Furthermore, for many genuinely modal logics

these automata also need to be deterministic. This is the case iff the tableau sys-

tem contains rules with more than one premiss. Then the tableau can have two bad

branches which share a common prefix such that the two �-threads on these bad

branches split before the two branches split. Thus, a nondeterminisitic automaton

may have accepting runs on these branches that differ on the common prefix, and a

labelling of the tableau nodes with single automaton states would not be possible.

Note that determinisation and complementation commute, but in general it is

easier to complement a deterministic automaton. Thus, Athread will be determinised

first. We make use of two constructions depending on its acceptance type.

(i) If Athread is a nondeterministic Büchi automaton then we use Piterman’s con-

struction [19] in order to obtain a deterministic parity automaton from it. 1 It

is a refinement of Safra’s famous determinisation procedure [22] which yields

deterministic Rabin automata and which are algorithmically not that easy to

handle after being complemented into Streett automata.

Note that nondeterministic Büchi automata accept all !-regular languages,

and bad branches in tableaux for all the logics mentioned here form an !-

regular language.

(ii) In cases of logics structurally simpler than the modal �-calculus, in partic-

ular those without nested fixpoint constructs like LTL, CTL, PDL, etc. bad

branches are recognisable by nondeterministic co-Büchi automata. Their ex-

pressive power is strictly below that of full !-regularity, but – as opposed to

1 Alternatively, one could use the newer determinisation procedure given in [13].
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Büchi automata – they enjoy determinisability. The Miyano-Hayashi construc-

tion [17] that originally transforms alternating into nondeterministic Büchi au-

tomata also works for this purpose. Additionally, it is only marginally more

complex than the powerset construction for automata on finite words and way

less complex than the Piterman construction for instance. Furthermore, de-

terministic co-Büchi automata can easily be complemented into deterministic

Büchi automata which means that in this case satisfiability reduces to the

solving of Büchi games, a strict subclass of parity games.

2.4 Solving Parity Games

A parity game is a finite graph whose node set is partitioned into nodes owned

by player 0 and nodes owned by player 1. Additionally, each node carries a non-

negative natural number, its priority. A play is an infinite sequence of adjacent

nodes. It is won by player 0 iff the highest priority seen infinitely often in this

sequence is even. Otherwise, player 1 wins this play.

The problem of solving a parity game is to compute for each node v, the player

who has a strategy that allows him to win every play starting in v that complies

with this strategy. It is well-known that this problem is well-defined, i.e. that for

each such node exactly one of the players wins this node [31].

The are various algorithms for solving parity games. The most successful ones

are the recursive proof of determinacy [31], the small progress measures algorithm

[12], and strategy improvement [30,23]. Even though each of those (or the others)

requires exponential time in the worst-case, parity games can be solved efficiently

in practice [9].

One way of reducing the complexity of the resulting parity games avoids the

mapping of every tableau node, annotated with a state of the deterministic au-

tomaton, to a node in the game graph. Instead, only those tableau nodes to which

the usual modal rule is applied, are mapped. This rule, in CTL for example written

as

'1,  1, . . . ,  m '2,  1, . . . ,  m . . . 'n,  1, . . . ,  m

EX'1, . . . , EX'n, AX 1, . . . , AX m, ℓ1, . . . , ℓk

is applied whenever all boolean constraints about the current state have been re-

solved and the sequent consists of literals and diamond- and box-formulas only.

This directly corresponds to a state in a possible model which is labeled with the

present propositions and has successors given by the diamond-formulas.

Typically, this rule is the only one that creates universal branching in a tableau,

and existential branching because of binary disjunctions in between can be collapsed

to a choice by the existential parity game player after the universal player chooses

one of the premisses of this rule. This leads to significantly smaller parity games,

and can also speed up the construction of those because less effort is needed for

the detection of cycles. However, one has to accummulate the priorities of the

automaton states that occur on a path between two applications of the modal rule.

Also, this optimisation is not easily possible if formulas are unguarded meaning

that the tableau rules do not guarantee that every set of formulas will eventually

be transformed into one to which the modal rule only applies. This is possible for
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PDL with nested Kleene-stars and arbitrary formulas of the modal �-calculus.

3 System Description

MLSolver provides a platform for satisfiability and validity checkers for various

modal fixpoint logics. In order to allow for domain-specific optimisations and to

reuse code for common functionalities, it is built in a modular way, separating the

construction of tableaux for example from the automata-theoretic procedures like

determinisation.

MLSolver is written in OCaml for the purposes of execution speed and source

code readability. It is able to test input formulas of the supported logics for satisfia-

bility or validity, or to check their satisfaction in a transition system given explicitly

as a labeled directed graph. The is done as described above: a parity game is gener-

ated from the formula as the product of a tableau with a deterministic automaton.

The parity game is then solved using PGSolver, a highly efficient and configurable

solver for parity games [9]. PGSolver can be linked into MLSolver which allows

for direct access to the solving routines in there and avoids costly printing and

parsing of large parity games.

MLSolver currently supports the following logics: the modal �-calculus, the

linear-time �-calculus, PDL, and CTL∗. Note that CTL is a simple fragment of

CTL∗ and so is LTL which is also a fragment of the linear-time �-calculus. Thus,

MLSolver is also capable of determining satisfiability and validity of LTL and CTL

formulas. However, �-threads in these two logics are co-Büchi-recognisable whereas

Büchi automata are required for their superlogics. The decision procedures for LTL

and CTL obtained in this way are therefore not optimal.

Extending MLSolver with another modal fixpoint logic is relatively easy. One

has to provide an abstract data type modelling formulas of that logic and to im-

plement the tableaux rules for that logic as well as the nondeterministic automata

recognising bad branches of these tableaux. The remaining tasks, i.e. the automata

determinisation and construction of parity games, as well as the decoding of the win-

ning strategy into a model / countermodel for the input formula can use available

routines.

4 Benchmarks

In this section we describe hand-crafted benchmarks formalised in any of the logics

that are currently supported by MLSolver and report on performance tests on

these benchmarks.

Note that the series presented in the tables to follow do not start with the small-

est instances. We only present instances with non-negligable running times. On the

other hand, the solving of larger instances not presented in the tables anymore has

experienced time-outs after one hour, marked †, or the constructed games were

already to large to be stored in the heap space.

All tests have been carried out on a 64-bit machine with four quad-core

OpteronTM CPUs and 128GB RAM space. The algorithm used to solve the re-

sulting parity games is Zielonka’s recursive one [31]. It has proved to be generally
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Without Compaction With Compaction

n ∣'n∣ ∣NBA∣ ∣DPA∣ ∣Game∣ tgenerate tsolve ∣Game∣ tgenerate tsolve

1 34 6 15 29 0.00s 0.00s 8 0.00s 0.00s

2 87 33 892 1, 623 0.04s 0.01s 343 0.04s 0.00s

3 140 69 10, 077 21, 435 1.11s 0.18s 4, 999 1.24s 0.06s

4 201 116 231, 884 556, 552 86.36s 22.54s 133, 602 132.10s 7.18s

Fig. 2. Runtime results on Hard Formulas with Fixpoint Alternation

the best among those implemented in PGSolver [9].

Hard Formulas with Fixpoint Alternation

It is well-known that alternation between least and greatest fixpoint quantifiers

causes formulas to be difficult to solve. We therefore use for benchmarking a family

of formulas – in the linear-time �-calculus – that features increasing alternation of

fixpoint quantifiers. It is built as follows.

For every n ≥ 1,  n := �X.⃝ X ∧
⋁n
i=1 qi ∧

⋀

j ∕=i ¬qj expresses that in every

state of a model exactly one of the propositions q1, . . . , qn is true. Let

'n :=  n →
(

(�Xn . . . �X2.�X1.

n
⋀

i=1

qi → ⃝Xi) ↔

⋁

i even

(�X.(�Y.qi ∨⃝Y ) ∧⃝X) ∧
⋀

j>i

j odd

�X.(�Y.¬qj ∧⃝Y ) ∨⃝X
)

where � = � if n is even, otherwise � = �. Note that 'n has alternation depth n−1.

It expresses that a deterministic parity condition is expressible as a nondeterministic

Büchi condition. The left part of the bi-implication states that the greatest index

i s.t. infinitely many states are labeled qi, is even. The right part states that there

is an even index i with qi occurring infinitely often and no qj doing so if j is odd

and greater than i. Intuitively, these two are equivalent. For technical reasons it is

necessary to demand uniqueness of propositions at each state.

The times needed to generate and solve the games resulting from determining

validity of 'n as well as their sizes are presented in Fig. 2. The columns in the left

part show the index n of the instance, the size of 'n, as well as the sizes of the

thread-finding automaton before and after determinisation. Note that ∣'n∣ grows

quadratically in n and validity checking for the linear-time �-calculus is PSPACE-

complete [24,28].

The middle and right parts contain the size of the resulting game as well as the

time it takes to generate and solve it. This is done in two different ways: “without

compaction” maps every tableau node annotated with a state of the deterministic

automaton to a node in the parity game, “with compaction” does so only for those

nodes that precede an application of the modal rule as explained in Sect. 2.4 above.

As one can see, this reduces the size of the resulting parity game and makes them

easier to solve, but generating the games becomes harder.
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Without Compaction With Compaction

Δ n ∣Δ∣ ∣NBA∣ ∣DPA∣ ∣Game∣ tgenerate tsolve ∣Game∣ tgenerate tsolve

200 1, 413 1, 404 1, 404 403, 005 65.09s 11.80s 1, 203 31.82s 0.20s

460 3, 233 3, 224 3, 224 2, 122, 905 3, 238.67s 34.79s 2, 763 491.52s 1.48s

'n 470 3, 303 3, 294 3, 294 † † † 2, 823 533.80s 1.40s

600 4, 213 4, 204 4, 204 † † † 3, 603 1, 182.64s 2.69s

840 5, 893 5, 884 5, 884 † † † 5, 043 3, 431.83s 7.80s

50 363 5 5 75, 472 20.77s 0.54s 9 11.40s 0.00s

100 713 5 5 300, 922 358.87s 5.60s 9 172.05s 0.00s

 n 160 1, 133 5 5 769, 462 2, 944.04s 41.39s 9 1, 137.01s 0.00s

170 1, 203 5 5 † † † 9 1, 458.52s 0.00s

210 1, 483 5 5 † † † 9 3, 544.81s 0.00s

Fig. 3. Runtime results on Nesting Stars in PDL

Nesting Stars in PDL

It is a well-known fact that the nesting-depth of Kleene stars in the programs of

a PDL-formula causes formulas to be difficult to be solved. Particularly, the decision

procedure has to make sure that certain formulas are not unfolded infinitely often

without also seeing infinitely many applications of the modal rule.

We therefore consider two simple families of formulas that feature programs with

deep nestings of Kleene stars. Let �0 := tt?∗ and �n+1 := (a∗�nb
∗)∗ and

'n := ⟨(a ∪ b)∗⟩q ∨ [�n]¬q  n := ⟨�n⟩q ∨ [(a ∪ b)∗]¬q

for n ≥ 0. Note that �n ≡ (a ∪ b)∗ for all n ≥ 1 but not for n = 0. Hence, 'n and

 n are valid for n ≥ 1. However, in 'n the nested Kleene stars occur inside a box

formula which is a greatest fixpoint construct. In  n they occur inside a diamond

formula which makes it a least fixpoint construct. Since we are looking at validity,

the involved deterministic automata need to trace �-threads, and 'n has a much

richer �-thread structure than  n.

The times needed to generate and solve the resulting games as well as their sizes

are presented in Fig. 3. A few aspects are worth noting. First of all, the sizes of the

determinised thread-finding automata equal those of the original nondeterministic

ones because of the structure of the formula: the latter are deterministic already.

This shows that determinisation need not always be a problem in this approach.

Also, note that one may expect 'n to be harder to prove valid than  n because of

the richer thread structure. However, the simpler program inside the box operator

leads to less branching in the tableaux which explains the better managability of

those formulas. This, however, is not an artefact of the automata-theory involved

but of the underlying tableaux. Hence, this benchmarking family shows that the

supposedly difficult automata-theoretic determinisation may actually be much less

of a problem than one faces using a tableau structure for satisfiability / validity.

An Example from the Model Checking Domain

MLSolver is also able to solve model checking problems by reading a given

transition system and combining it with a formula specification that is to be ver-

ified in the transition system. We benchmark a simple fairness verification prob-

lem. States of a transition system modelling an elevator for n floors are of type
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Without Compaction With Compaction

n ∣TS∣ ∣Game∣ tgenerate tsolve ∣Game∣ tgenerate tsolve

5 1, 307 85, 570 1.54s 0.81s 19, 263 0.66s 0.20s

6 9, 028 606, 730 14.59s 7.30s 138, 308 5.64s 2.32s

FIFO 7 71, 815 4, 914, 794 247.61s 127.51s 1, 130, 884 57.57s 27.14s

8 645, 352 † † † 10, 370, 665 1, 465.59s 600.84s

5 1, 363 89, 204 1.68s 0.94s 20, 126 0.80s 0.32s

6 9, 288 624, 637 16.02s 8.61s 142, 720 7.30s 3.14s

LIFO 7 73, 065 5, 008, 902 288.39s 88.12s 1, 154, 799 83.45s 39.59s

8 651, 168 † † † 10, 505, 651 2, 342.61s 1, 088.88s

Fig. 4. Runtime results on the example from the Model Checking Domain

{1, . . . , n} × {o, c} × (
∪

{Perm(S) ∣ S ⊆ {1, . . . , n}). The first component describes

the current position of the elevator as one of the floors. The second component

indicates whether the door is open or closed. The third component – a permutation

of a subset of all available floors – holds the requests, i.e. those floors that should

be served next. The transitions on these are as follows.

∙ At any moment, any request or none can be issued. For simplicity reasons, we

assume that at most one floor is added to the requests per transition. Note that

nondeterministically, no request can be issued, and a request for a certain floor

that is already contained in the current requests does not change them.

∙ If the door is open then it is closed in the next step, the current floor does not

change.

∙ If it is closed, the elevator moves one floor (up or down) into the direction of the

first request. If the floor reached that way is among the requested ones, the door

is opened and that floor is removed from the current requests. Otherwise, the

door remains closed.

Proposition isPressed holds in any state s.t. the request list contains the number

n, and isAt holds in a state where the current floor is n. We consider two different

implementations of this elevator model: the first one stores requests in FIFO style,

the second in LIFO style.

Both implementations are checked against the CTL∗ formula A(GFisPressed →

GFisAt). Hence, this formula requires all runs of the elevator to satisfy the following

fairness property: if the top floor is requested infinitely often then it is being served

infinitely often. Note that the FIFO implementation encodes a positive instance of

the model checking problem whereas FILO encodes a negative one.

The times needed to solve them as well as their sizes are presented in Fig. 4. It

shows that this method is capable of doing model checking for non-trivial proper-

ties and large transition systems, here more than half a million states. The table

does not show the sizes of the involved automata because they are independent of

n since the formula expressing the desired correctness property is fixed, and the

thread-finding automata only depend on the formula in CTL∗ model checking. The

nondeterministic one has 8 states, the determinised one 27.
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Without Compaction With Compaction

Δ n ∣Δ∣ ∣NBA∣ ∣DPA∣ ∣Game∣ tgenerate tsolve ∣Game∣ tgenerate tsolve

1 51 143 3, 529 12, 679 0.57s 0.11s 1, 071 0.37s 0.01s

2 70 224 13, 786 95, 720 5.18s 1.18s 5, 559 2.85s 0.08s

�0n 3 89 321 67, 743 928, 931 71.00s 29.49s 65, 079 39.81s 2.38s

4 108 434 235, 290 6, 031, 198 1, 007.19s 611.74s 286, 450 368.11s 61.35s

4 83 74 35, 591 89, 652 7.86s 1.04s 8, 853 4.37s 0.13s

5 97 83 154, 399 592, 759 75.49s 14.24s 67, 269 37.58s 3.00s

�1n 6 111 92 265, 252 929, 756 155.37s 29.23s 86, 237 80.35s 3.90s

7 125 101 1, 110, 031 6, 070, 401 2, 431.73s 895.97s 665, 915 1, 194.09s 43.86s

8 139 110 1, 768, 900 † † † 772, 587 2, 601.78s 72.14s

1 32 35 160 318 0.01s 0.00s 65 0.01s 0.00s

�2n 2 46 59 2, 968 8, 673 0.38s 0.05s 1, 114 0.42s 0.01s

3 60 81 12, 994 53, 792 3.00s 0.42s 5, 050 4.14s 0.08s

Fig. 5. Runtime results on Difficult Temporal Formulas

Difficult Temporal Formulas

It is well-known that limit closure – the fact that the limit of an infinite sequence

of prefix-sharing paths in a transition system is again a path in this system – is

one of the major problems in devising a decision procedure for CTL∗ [21]. This

principle is expressible in CTL∗ as LC ∗(�, ) := AG(E → EX((E')UE )) ∧ E →

EG((E')UE ) where ' and  are arbitrary (not necessarily state) formulas. CTL

can express a restricted version of that: LC ( ) := AG( → EX ) ∧  → EG . For

the benchmarking, we consider the following families of formulas.

�0n := LC ∗('n,  n) �1n := LC ∗(tt,  n) �2n := LC ( n)

where 'n := G(
⋁

i≤n ¬qi),  0 := q0,  2n+1 := q2n+1 ∧ X 2n, and  2n+2 := q2n+2 ∨

X 2n+1. It is reasonable to assume that these formulas are relatively difficult to

prove valid.

The times needed to generate and solve the resulting games as well as their sizes

are presented in Fig. 5.

5 Conclusion and Further Work

The implementation of MLSolver and some of the benchmarks show that the com-

bined tableaux-automata way of satisfiability and validity solving for modal fixpoint

logics is viable. Even difficult logics like CTL∗ and the modal �-calculus can be tack-

led this way. However, the benchmarks also show a significant discrepancy between

the time that is required to generate the parity games and the time that is required

to solve them. There is no question that solving the games is not really the problem,

but building the tableaux as well as the associated automata. The benchmarks par-

ticularly show that there are basically two difficulties in satisfiability and validity

solving for such logics.

The first and most obvious difficulty is that of excluding branches with �-threads.

The automata-theoretic approach we follow here is theoretically elegant and appeal-

ing because it applies to a whole variety of logics, as opposed to ad-hoc solutions

for one specific logic. The benchmarks reveal a great necessity for optimisations

in the determinisation procedures, though. These are theoretically well-understood

10



Friedmann and Lange

but practically not optimal yet. The reductions employed here would, for example,

benefit from a built-in on-the-fly minimisation of the deterministic automata. It is

not clear though, whether this is possible and how to do that.

Another difficulty which is not necessarily exhibited by the benchmarks pre-

sented here is propositional reasoning. It is easy to construct formulas that model

binary counters for example for which the construction of parity games essentially

transforms them into exponentially larger disjunctive or conjunctive normal form.

Deciding these formulas is then difficult purely because of the size of the games.

It is planned to extend and optimise MLSolver in the furture in various ways.

As mentioned above, LTL and CTL are currently being supported but only in a

non-optimal way. Implementing separate modules for LTL and CTL is not difficult.

This will also create a set-up which allows to quantify exactly the benefit of using

co-Büchi over Büchi automata. There are also other logics (graded �-calculus,

probabilistic �-calculus, etc.) for which this approach works in theory [4], and they

can be implemented in MLSolver as well.

A significant disadvantage is also the creation of the entire parity game before

it is being solved. This is in contrast to tableau-based solvers for example, and is

done because so far there is only one algorithm for solving parity games which works

on-the-fly, i.e. generates the game graph whilst solving it [25]. However, it turns

out that in practice it is often much less efficient than global algorithms [31,30].

On the other hand, it remains to be seen whether or not the local algorithm may

perform better on those graphs that represent satisfiability and validity problems,

or whether or not the good global algorithms can be made to work on-the-fly.

Finally, there is another determinisation procedure for nondeterministic Büchi

automata which is not based on tree-like states [13]. It remains to be seen whether

this leads to more efficient determinisation and therefore quicker generation of par-

ity games. Another way of avoiding such Safra-like determinisation constructions

transforms the �-thread recognising nondeterministic automata into, again, nonde-

terministic Büchi automata which are exponentially larger but can be used in this

game setting instead of deterministic ones [11]. They are presumed to be easier to

create than the deterministic ones which can be put to the test in this setting as

well.
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