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Abstract

This paper presents a new lower bound for the discrete
strategy improvement algorithm for solving parity games
due to Vöge and Jurdziński. First, we informally show
which structures are difficult to solve for the algorithm. Sec-
ond, we outline a family of games on which the algorithm
requires exponentially many strategy iterations, answering
in the negative the long-standing question whether this al-
gorithm runs in polynomial time. Additionally we note that
the same family of games can be used to prove a similar
result w.r.t. the strategy improvement variant by Schewe as
well as the strategy iteration for solving discounted payoff
games due to Puri.

1. Introduction

Parity games are simple two-player games of perfect in-
formation played on directed graphs whose nodes are la-
beled with natural numbers, called priorities. A play in a
parity game is an infinite sequence of nodes whose winner
is determined by all priorities occurring infinitely often. In
fact, it depends on the parity of the highest priority that oc-
curs infinitely often, giving parity games their name.

Parity games occur in several fields of theoretical com-
puter science, e.g. as solution to the problem of comple-
mentation or determinisation of tree automata [5, 2] or as
algorithmic backend to the model checking problem of the
modal µ-calculus [3, 15].

There are many algorithms that solve parity games, such
as the recursive decomposing algorithm due to Zielonka
[18] and its recent improvement by Jurdziński, Paterson and
Zwick [9], the small progress measures algorithm due to Ju-
rdziński [8] with its recent improvement by Schewe [12],
the model-checking algorithm due to Stevens and Stirling

[14] and finally the two strategy improvement algorithms
by Vöge and Jurdziński [17] and Schewe [13].

All mentioned algorithms except for the two strategy im-
provement algorithms have been shown to have a super-
polynomial worst-case runtime complexity at best or there
is at least little doubt that their worst-case runtime complex-
ity is super-polynomial or even exponential.

Solving parity games is one of the few problems that be-
longs to the complexity class NP∩coNP and that is not (yet)
known to belong to P [3]. It has also been shown that solv-
ing parity games belongs to UP ∩ coUP [7]. The currently
best known upper bound on the deterministic solution of
parity games is O(|E| · |V | 13 |ranΩ|) due to Schewe’s big-
step algorithm [12].

Parity games are closely related to other games of infinite
duration, in particular mean, and discounted payoff as well
as simple stochastic games [7, 15]. The worst-case com-
plexity is unknown in all cases, but since parity games are
the simplest among these games, lower bounds on solving
parity games can have far reaching implications.

The strategy improvement, strategy iteration or policy it-
eration technique is the most general approach that can be
applied as a solving procedure for all of these game classes.
It was introduced by Howard [6] for solving problems on
Markov decision processes and has been adapted by sev-
eral other authors for solving discounted and mean payoff
games [10, 19] as well as parity games [17].

Strategy iteration is an algorithmic scheme that is param-
eterized by the improvement policy which basically defines
how to select a successor strategy in the iteration process.
There are two major kinds of improvement policies: de-
terministic and randomized approaches; we will investigate
the deterministic approaches in this paper.

For discounted payoff games, there is the deterministic
algorithm due to Puri [10] that can also be used to solve
mean payoff games as well as parity games by reduction
[19, 17]. Vöge’s improvement algorithm is a refined ver-



sion of Puri’s on parity games that omits the use of high-
precision rational numbers; there are at least two reason-
able improvement policies for Vöge’s procedure appearing
in the literature such as Vöge’s original locally optimizing
policy and Schewe’s globally optimizing policy.

An example has been known for some time for which a
sufficiently poor choice of switching policy causes an ex-
ponential number of iterations of the strategy improvement
algorithm [1], but there have been no games known so far
on which the policies due to Vöge or Schewe require more
than linearly many iterations.

In this paper, we particularly investigate the locally op-
timizing policy for solving parity games by Vöge and Ju-
rdziński. We present a family of games comprising a lin-
ear number of nodes and a quadratic number of edges such
that the strategy improvement algorithm using this policy
requires an exponential number of iterations on them. These
games can be refined in such a way that they only comprise
a linear number of edges resulting in an undeniable expo-
nential lower bound, but the refined construction obfuscates
the main idea behind it and is therefore not presented here.

It should be noted that these games can be also applied
to show exponential lower bounds for Puri’s algorithm for
solving mean and discounted payoff games by using the
standard reductions as well as to prove an exponential lower
bound for Schewe’s variant. In order to prove the latter re-
sult, some structures of the presented games have to be al-
tered; we omit this construction due to page restrictions.

Section 2 defines the basic notions of parity games and
some notations that are employed throughout the paper.
Section 3 recaps the strategy improvement algorithm by
Vöge and Jurdziński. In Section 4, we present two graph
structures that are tricky to be solved by strategy iteration
algorithms. Section 5 outlines a family of games on which
the algorithm requires an exponential number of iterations.

2. Parity Games

A parity game is a tuple G = (V, V0, V1, E,Ω) where
(V,E) forms a directed graph whose node set is partitioned
into V = V0 ∪ V1 with V0 ∩ V1 = ∅, and Ω : V → N is the
priority function that assigns to each node a natural number
called the priority of the node. We assume the graph to be
total, i.e. for every v ∈ V there is a w ∈ V s.t. (v, w) ∈ E.

In the following we will restrict ourselves to finite parity
games. W.l.o.g. we assume Ω to be injective, i.e. there are
no two different nodes with the same priority.

We also use infix notation vEw instead of (v, w) ∈
E and define the set of all successors of v as vE :=
{w | vEw}. The size |G| of a parity game G =
(V, V0, V1, E, Ω) is defined to be the cardinality of E,
i.e. |G| := |E|; since we assume parity games to be total
w.r.t. E, this is a reasonable way to measure the size.

The game is played between two players called 0 and 1:
starting in a node v0 ∈ V , they construct an infinite path
through the graph as follows. If the construction so far has
yielded a finite sequence v0 . . . vn and vn ∈ Vi then player
i selects a w ∈ vnE and the play continues with v0 . . . vnw.

Every play has a unique winner given by the parity of the
greatest priority that occurs infinitely often. The winner of
the play v0v1v2 . . . is player i iff max{p | ∀j ∈ N ∃k ≥ j :
Ω(vk) = p} ≡2 i (where i ≡k j holds iff |i− j| mod k =
0). That is, player 0 tries to make an even priority occur
infinitely often without any greater odd priorities occurring
infinitely often, player 1 attempts the converse.

We depict parity games as directed graphs where nodes
owned by player 0 are drawn as circles and nodes owned by
player 1 are drawn as rectangles; all nodes are labelled with
their respective priority, and - if needed - with their name.

A strategy for player i is a – possibly partial – function
σ : V ∗Vi → V , s.t. for all sequences v0 . . . vn with vj+1 ∈
vjE for all j = 0, . . . , n − 1, and all vn ∈ Vi we have:
σ(v0 . . . vn) ∈ vnE. A play v0v1 . . . conforms to a strategy
σ for player i if for all j ∈ N we have: if vj ∈ Vi then
vj+1 = σ(v0 . . . vj). Intuitively, conforming to a strategy
means to always make those choices that are prescribed by
the strategy. A strategy σ for player i is a winning strategy
in node v if player i wins every play that begins in v and
conforms to σ.

A strategy σ for player i is called positional if for all
v0 . . . vn ∈ V ∗Vi and all w0 . . . wm ∈ V ∗Vi we have: if
vn = wm then σ(v0 . . . vn) = σ(w0 . . . wm). That is, the
value of the strategy on a finite path only depends on the
last node on that path.

WithG we associate two setsW0,W1 ⊆ V such thatWi

is the set of all nodes v s.t. player i wins the game G start-
ing in v. Here we restrict ourselves to positional strategies
because it is well-known that these suffice. In fact, parity
games enjoy positional determinancy meaning that for ev-
ery node v in the game either v ∈W0 or v ∈W1 [2]. Hence,
we consider a strategy for player i as a function σ : Vi → V ,
s.t. for all v ∈ Vi holds that vEσ(v). Furthermore, it is not
difficult to show that, whenever player i has winning strate-
gies σv for all v ∈ U for some U ⊆ V , then there is also
a single strategy σ that is winning for player i from every
node in U .

The problem of solving a parity game is to compute W0

and W1 as well as corresponding winning strategies σ0 and
σ1 for the players on their respective winning regions.

A strategy σ for player i induces a strategy subgame
G|σ := (V, V0, V1, E|σ,Ω) where E|σ := {(u, v) ∈ E |
u ∈ dom(σ) ⇒ σ(u) = v}. Such a subgame G|σ is basi-
cally the same game as G with the restriction that whenever
σ provides a strategy decision for a node u ∈ Vi all transi-
tions from u but σ(u) are no longer accessible. The set of
strategies for player i is denoted by Si(G).
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3. Strategy Improvement

First, we briefly recap the basic definitions of the strat-
egy improvement algorithm. For a given parity game
G = (V, V0, V1, E, Ω), the reward of node v is de-
fined as follows: rewG(v) := Ω(v) if Ω(v) ≡2 0 and
rewG(v) := −Ω(v) otherwise. The set of profitable nodes
for player 0 is defined to be V⊕ := {v ∈ V | Ω(v) ≡2 0}
and V	 := {v ∈ V | Ω(v) ≡2 1} likewise for player 1.

The relevance ordering < on V is induced by Ω: v <
u :⇐⇒ Ω(v) < Ω(u); additionally one defines the reward
ordering ≺ on V by v ≺ u : ⇐⇒ rewG(v) < rewG(u).
Note that both orderings are total due to injectivity of the
priority function.

A loopless path in G is an injective map π : {0, . . . , k −
1} → V conforming with E, i.e. π(i)Eπ(i + 1) for every
i < k. The length of a loopless path is denoted by |π| := k.
The set of loopless paths π in a gameG originating from the
node v (i.e. π(0) = v) is denoted by ΠG(v). We sometimes
write π = v0 . . . vk−1 to denote the loopless path π : i 7→
vi.

A node v in G is called dominating cycle node iff there
is a loopless path π ∈ ΠG(v) s.t. π(|π| − 1)Eπ(0) and
max{Ω(π(i)) | i < |π|} = Ω(v). The set of dominating
cycle nodes is denoted by CG.

A key point of the strategy improvement algorithm is to
assign to each node in the game graph a valuation. Basi-
cally, a valuation describes a loopless path originating from
its node to a dominating cycle node. Such a valuation con-
sists of three parts: the dominating cycle node, the set of
more relevant nodes (w.r.t. the cycle node) on the loopless
path leading to the cycle and the length of the loopless path
(which measures the amount of less relevant nodes).

To compare the second component of a valuation - the
set of nodes on the way to the cycle - we introduce a total
ordering≺ on 2V : to determine which set of nodes is better
w.r.t. ≺, one investigates the node with the highest priority
that occurs in only one of the two sets. The set owning that
node is greater than the other if and only if that node has an
even priority. More formally:

M ≺ N :⇐⇒{
(M4N 6= ∅ ∧max<(M4N) ∈ N ∩ V⊕)∨
(M4N 6= ∅ ∧max<(M4N) ∈M ∩ V	)

where M4N denotes the symmetric difference of both
sets.

A loopless path π = v0 . . . vk with vk ∈ CG induces a
node valuation for the node v0 as follows:

ϑπ := (vk, {vi | vk < vi}, k)

A node valuation ϑ for a node v is a triple (c,M, l) ∈ V ×
2V ×|V | such that there is a loopless path π with π(0) = v,
π(|π| − 1) ∈ CG and ϑπ = ϑ.

We extend the total ordering on sets of nodes to node
valuations:

(u,M, e) ≺ (v,N, f) :⇐⇒
(u ≺ v) ∨ (u = v ∧M ≺ N)∨
(u = v ∧M = N ∧ e < f ∧ u ∈ V	)∨
(u = v ∧M = N ∧ e > f ∧ u ∈ V⊕)

A game valuation is a map Ξ : V → V × 2V × |V |
assigning each v ∈ V a node valuation. A partial ordering
on game valuations is defined as follows:

Ξ � Ξ′ :⇐⇒ (∀v ∈ V : Ξ(v) � Ξ′(v)) ∧ (Ξ 6= Ξ′)

Game valuations are used to measure the performance of
a strategy of player 0: for a fixed strategy σ of player 0 and
a node v, the associated valuation basically states which is
the worst cycle that can be reached from v conforming to
σ as well as the worst loopless path leading to that cycle
(also conforming to σ). Intuitively, the associated valuation
reflects the best counter-strategy player 1 could play.

A strategy σ of player 0 therefore can be evaluated as
follows:

Ξσ : v 7→ min
≺
{ϑπ | π ∈ ΠG|σ (v) ∧ π(|π| − 1) ∈ CG|σ}

We also write v ≺σ u to compare the Ξσ-valuations of
two nodes, i.e. to abbreviate Ξσ(v) ≺ Ξσ(u).

Lemma 1. [17] A valuation of a strategy can be computed
in polynomial time.

A game valuation Ξ induces a counter-strategy τΞ of
player 1 by selecting the least profitable strategy decision
with respect to the Ξ:

τΞ : v ∈ V1 7→ min
≺

UΞ(v)

where UΞ(v) = {u ∈ vE | ∀w ∈ vE : Ξ(u) � Ξ(w)}.
If Ξ originates from a strategy σ, τΞ can be seen as the

best counter-strategy against σ; we also write τσ for τΞσ .
A valuation Ξ originating from a strategy σ can be used

to create a new strategy of player 0. The strategy im-
provement algorithm only allows to select new strategy de-
cisions for player 0 occurring in the improvement arena
AG,σ := (V, V0, V1, E

′, Ω) where

vE′u :⇐⇒
vEu ∧ (v ∈ V1 ∨ (v ∈ V0 ∧ σ(v) �σ u))

Thus all edges performing worse than the current strat-
egy are removed from the game. A strategy σ is improvable
iff there is a node v ∈ V0, a node u ∈ V with vEu and
σ(v) 6= u s.t. σ(v) ≺σ u.
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An improvement policy now selects a strategy for player
0 in a given improvement arena w.r.t. a valuation originating
from a strategy. More formally: an improvement policy is
a map IG : S0(G) → S0(G) fulfilling the following two
conditions for every strategy σ.

1. For every node v ∈ V0 it holds that (v, IG(σ)(v)) is
an edge in AG,σ .

2. If σ is improvable then there is a node v ∈ V0 s.t.
σ(v) ≺σ IG(σ)(v).

Jurdziński and Vöge proved in their work that every
strategy that is improved by an improvement policy can
only result in strategies with valuations being better (w.r.t.
�) than the valuation of the original strategy.

Theorem 2. [17] Let G be a parity game, σ be an im-
provable strategy and IG be an improvement policy. Let
σ′ = IG(σ). Then Ξσ � Ξσ′ .

If a strategy is not improvable, the strategy iteration
comes to an end.

Theorem 3. [17] Let G be a parity game and σ be a non-
improvable strategy. Then the following holds:

1. W0 = {v | Ξσ(v) = (w, , ) ∧ w ∈ V⊕}

2. W1 = {v | Ξσ(v) = (w, , ) ∧ w ∈ V	}

3. σ is a winning strategy for player 0 on W0

4. τ := τσ is a winning strategy for player 1 on W1

The strategy iteration starts with an initial strategy ιG
and runs for a given improvement policy IG as follows.

Algorithm 1 Strategy Iteration
1: σ ← ιG
2: while σ is improvable do
3: σ ← IG(σ)
4: end while
5: return W0, W1, σ, τ as in Theorem 3

The initial strategy can be selected in several ways. We
focus on a very easy method here, always selecting the node
with the best reward:

ιG : v ∈ V0 7→ max
≺
{u | vEu}

The improvement policy we are following in this paper
is the locally optimizing policy IlocG due to Jurdziński and
Vöge. It simply selects the most profitable strategy decision
with respect to the current valuation:

IlocG (σ) : v ∈ V0 7→ max
≺

Uσ(v)

where Uσ(v) = {u ∈ vE | ∀w ∈ vE : w �σ u}.
Lemma 4. [17] The locally optimizing policy can be com-
puted in polynomial time.

4. Critical Graphs

Every approach trying to construct a game family of
polynomial size requiring exponentially many iterations to
be solved, needs to focus on the second component of game
valuations: there are only linearly many different values for
the first and third component while there are exponentially
many for the second.

Particularly, as there are at most linearly many different
cycle nodes that can occur in valuations during a run, there
is no real benefit in actually using different cycle nodes.
Hence the basic layout of a game exploiting exponential be-
haviour consists of a (probably) complex structure leading
to one single loop – the only cycle node that will occur in
valuations1. Then, the whole strategy iteration simply tries
to improve the paths leading to the cycle node.

More formally: a parity game G is a 1-sink game iff the
following two properties hold:

1. Sink Existence: There is a node v∗ (called the 1-sink
of G) with v∗Ev∗ and Ω(v∗) = 1 reachable from all
nodes; also, there is no other node w with Ω(w) ≤
Ω(v∗).

2. Sink Seeking: For each player 0 strategy σ with ΞιG �

Ξσ and each node w it holds that the cycle component
of Ξσ(w) equals v∗.

Obviously, a 1-sink game is won by player 1. Note that
comparing node valuations in a 1-sink game can be reduced
to comparing the path components of the respective node
valuations for two reasons: first, the cycle component re-
mains constant. Second, the path-length component equals
the cardinality of the path component, because all nodes ex-
cept the sink node are more relevant than the cycle node
itself.

Lemma 5. Let G be a parity game fulfilling the sink exis-
tence property w.r.t. v∗. G is a 1-sink game iff G is com-
pletely won by player 1 and for each node w it holds that
the cycle component of ΞιG(w) equals v∗.

All proofs have been put into the appendix.
In the case of a 1-sink game, we will therefore identify

node valuations with their path component. When compar-
ing the valuation of two nodes u and v w.r.t. a strategy σ in a
1-sink game, we additionally apply a more detailed relation
which also states which node in the symmetric difference of
the two paths is most significant:

v ≺qσ u :⇐⇒ v ≺σ u ∧max
<

(Ξσ(u)4Ξσ(v)) = q

1Such structures can easily be identified by preprocessing, but obvi-
ously it is not very difficult to obfuscate the whole construction without
really altering its effect on the strategy iteration.
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Corollary 6. Let G be a 1-sink game and a, b, c, p, q be
nodes in G.

1. Let a �pσ b �qσ c. Then a �rσ c where r = max(p, q).

2. Let a �pσ b, c �qσ b and p > q. Then a �pσ c.

There are certain graph structures confusing strategy it-
eration. We will combine two of them to finally construct
a binary counter, leading to a family of games requiring an
exponential number of iterations. Those two structures will
be referred to as deceleration lanes and simple cycles.

We give an informal introduction to these structures in
this chapter by considering them as parts of a (more) com-
plex 1-sink game.

The deceleration lane is a family of structures that com-
prise two nodes, s and r, having outgoing edges to the rest
of the game, a lane of nodes, ak, . . . , a0 having incoming
edges from the rest of the game, an internal parallel lane of
nodes, bk, . . . , b0, and finally an internal node c. See Figure
1 for an example of a deceleration lane.

a3 : 10 a2 : 8 a1 : 6 a0 : 4

b3 : 9 b2 : 7 b1 : 5 b0 : 3 c : 12

r : 14 s : 2

Figure 1. A Deceleration Lane

The initial setting for a deceleration lane would be a
strategy that maps all player 0 nodes to r. Following a
run of the strategy improvement algorithm on the whole
graph, consider a setting in which the valuation of r remains
greater than the one of s. In each such iteration, only one
edge of the lane is a proper improvement edge: at first, the
edge from b0 to c, then the edge from b1 to b0 etc.

At the same time, after updating to the improvement
edge, there is always a new node - meaning one in each
iteration - accessible from the outside in the lane that has
the highest valuation. In the beginning, the best accessible
node is a3, then a0, then a1 and after that a2 etc.

There is another important feature of deceleration lanes:
whenever the valuation of s gets better than the one of r, all
nodes immediately switch to s.

Therefore, the whole strategy-structure of the decelera-
tion lane can be reset simply be valuating s higher than r,
even if it is only for the duration of one iteration. After
that, the deceleration lane can restructure itself in the way
described before.

σ s ≺σ′ r c b0 b1 b2 b3
σ0 Yes r r r r r
σ1 Yes r c r r r
σ2 Yes r c b0 r r
σ3 Yes r c b0 b1 r
σ4 Yes r c b0 b1 b2
σ5 No s s s s s
σ6 Yes r r r r r
...

...
...

...
...

...
...

Figure 2. Activity of a Deceleration Lane

Figure 2 illustrates the update activity of the decelera-
tion lane: the first column shows the sequence of strategies
associated with a run of the strategy iteration on a 1-sink
game containing the deceleration lane. The second column
shows which of the two nodes s and r has a better valua-
tion according to the respective preceding strategy σ′; the
other columns show the computed strategy decisions of the
current strategy. Note that the external event that resets the
lane simply valuates s better than r for only one iteration.

A deceleration lane is used to absorb the update activity
of other nodes in such a way that wise strategy updates are
postponed.

One scenario would be a simple cycle consisting of a
player 0 and a player 1 node: assume that a wise strategy
for player 0 is to move to the player 1 node s.t. player 1 is
forced to leave the cycle; see Figure 3 for an example of
such a situation.

d : 3 e : 4

to the Deceleration Lane

Figure 3. Simple Cycle

Player 0 will update the strategy in d to move to e iff
there is no edge leading out of the cycle that is better than
the edge used before. A deceleration lane thus is a device to
fulfill these needs with the addition to be reusable due to its
ability to reset itself.

5



5. Exponential Lower Bound

We present a family of parity games requiring exponen-
tially many iterations to be solved by the strategy improve-
ment algorithm. The games are denoted by Gn. The set of
nodes are Vn := V0

n∪V1
n, where Vin denote the sets of nodes

owned by player i:

V0
n := {s, c, r, b0, . . . , b2n−1, d0, . . . , dn−1

g0, . . . , gn−1, k0, . . . , kn−1}
V1
n := {p, q, a0, . . . , a2n−1, e0, . . . , en−1,

f0, . . . , fn−1, h0, . . . , hn−1}

Please refer to Figure 4 for the priority function and the
edges of Gn. The game G3 is depicted in Figure 5.

Node Priority Successors
s 2 {p} ∪ {fj | j < n}
b0 4n+ 3 {s, r, c}
bi>0 4n+ 2i+ 3 {s, r, bi−1}
ai 4n+ 2i+ 4 {bi}
c 8n+ 4 {s, r}
r 8n+ 6 {p} ∪ {gj | j < n}
di 4i+ 3 {s, ei, r}∪

{aj | j < 2i+ 2}
ei 4i+ 4 {di, hi}
gi 4i+ 6 {fi, ki}
ki 8n+ 4i+ 7 {p} ∪ {gj | i < j < n}
fi 8n+ 4i+ 9 {ei}
hi 8n+ 4i+ 10 {ki}
q 1 {q}
p 12n+ 8 {q}

D
e
c
e
l
.
L
a
n
e

C
y
c
l
e
s

B
a
c
k
e
n
d

E
n
d

Figure 4. The Game Gn

Fact 7. The game Gn has 10·n+5 nodes, 1.5·n2+20.5·n+6
edges and 12·n+8 as highest priority. In particular, |Gn| =
O(n2).

Again, we note that Gn can be refined in such a way that
it only comprises a linear number of edges. This can be
basically achieved by replacing the edges going from the
cycle nodes to the deceleration lane as well as the edges
going from the backend nodes k∗ to g∗ respectively by an
inductive ladder-style construction; the overall structure of
these refined games is still the same, but more obscure and
therefore omitted here.

First, we note some easy properties regarding Gn, partic-
ularly that Gn is indeed a 1-sink game.

Lemma 8.

1. The game Gn is completely won by player 1.

2. q is the 1-sink of Gn and the cycle component of
ΞιGn (w) equals q for all w.

By Lemma 5 it follows that Gn is a 1-sink game, hence
it is safe to identify the valuation of a node with its path
component from now on.

The game Gn implements a binary counter which is rep-
resented by n simple cycles that are connected to the de-
celeration lane. A bit i is considered to be set iff player 0
moves from di to ei by the current strategy. The main idea
is to absorb the update activity of cycles representing bits
which are not set by using the deceleration lane.

The backend structure of the game basically connects
all bits while it preserves the following idea: each ki-node
moves to the structure associated with the lowest bit greater
than i which is set, because this is the most profitable strat-
egy decision.

The strategy decision of gi depends on whether bit i is
set or not: if it is, then gi moves to fi by the current strategy
and otherwise it moves to ki. To put it simple: the most
profitable path (w.r.t. the current strategy σ and the associ-
ated counter-strategy τσ) starts in the backend structure of
the lowest bit which is set and advances to the second low-
est bit which is set etc. to the highest bit which is set and
thereafter to p.

The deceleration lane itself also eventually reaches this
path over the node r which connects the lane by the current
strategy to the backend structure of the lowest bit which is
set.

Cycles which represent lower bits have less edges lead-
ing to the deceleration lane. Therefore, the cycle represent-
ing the lowest bit which is not set, gets set (i.e. player 0
moves into the simple cycle forcing player 1 to move out)
after some iterations, because it has the least number of
edges connecting it to the deceleration lane.

Next, the deceleration lane gets reset and all cycles repre-
senting lower bits than the one that just has been set, get un-
set again for the following reasons: after setting bit i, player
1 is forced to move from ei to hi which always moves to ki.

This has two immediate consequences: first, it is prof-
itable for s to update to fi implying that s will have a better
valuation than r still moving to the former most profitable
gi; hence, the deceleration lane gets reset. Second, all nodes
dj representing lower bits than the one that just has been set,
also update to move to r in order to directly reach the back-
end structure of the newly set bit.

Cycles representing higher bits which are set, remain set,
because updating to lower backend structures would be a
degradation due to the node fj having a high unprofitable
priority which can be omitted when moving directly into its
backend structure (from the point of view of dj).

One iteration after that, s will also improve to the newly
lowest set bit backend structure and therefore the whole de-
celeration process will start over again.
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Now we will formally study the game. We will represent
the state of the n-bit counter using elements α ∈ {0, 1}n,
where α0 is considered to be the lowest and αn−1 the high-
est bit in α. Let <n denote the lexicographic ordering
on {0, 1}n valuating higher bits first; 0n := (0 . . . 0) and
1n := (1 . . . 1) represent the least and greatest possible
bit states. For α 6= 1n, α+ denotes the <n-least bit state
greater than α; accordingly, α− denotes the <n-greatest bit
state less than α for α 6= 0n.

The lowest bit in α which is not set is denoted by
µα := max{j ≤ n | ∀k < j.αk = 1} and simi-
larly the lowest bit in α which is set is denoted by να :=
max{j ≤ n | ∀k < j.αk = 0}. The bit state that results
from α when the first j + 1 bits are cleared is denoted by
α|j := (αn−1 . . . αj+10 . . . 0).

The number of strategy iterations that is needed to set the
currently lowest bit which is not set directly depends on the
index of the respective bit and will be bounded by 3 + γα,
where

γα :=

{
2 · µα + 4 if α 6= 1n
2 · n− 1 if α = 1n

We split the correctness proof into separate lemmas.
First, we define a family of partial strategies σD(n,β) for
−2 ≤ β that will be proven to reflect the sequence of strate-
gies w.r.t. the deceleration lane in a run of the improvement
algorithm on Gn. Define

σD(n,β) :=



b0 7→


s if β = −2
r if β = −1
c otherwise

bj>0 7→


s if β = −2
r if − 2 < β < j

bj−1 otherwise

c 7→

{
s if β = −2
r otherwise

Lemma 9 (Deceleration Lane Behaviour). Let −2 ≤ β, σ
be a strategy s.t. σ|Dn = σD(n,β) where Dn = dom(σD(n,β))
and σ′ := Iloc(σ). Then the following holds:

1. s ≺σ r implies σ′|Dn = σD(n,β+1).

2. s �σ r and β > −2 implies σ′|Dn = σD(n,−2).

3. s ≺σ r and β = −2 implies r �σ c �σ a2n−1 �σ
. . . �σ a0 �σ s.

4. s ≺σ r and β ≥ −1 implies aβ �σ . . . �σ a0 �σ
c �σ a2n−1 �σ . . . �σ aβ+1 �σ r �σ s.

5. s �σ r and β > −2 implies s �σ v for all v =
c, r, a0, . . . , a2n−1.

Second, we define a family of partial strategies σB(n,α,β)

for α ∈ {0, 1}n and −2 ≤ β ≤ 0 that will be proven to
reflect the sequence of strategies w.r.t. the backend structure
in a run of the improvement algorithm. Define σB(n,α,β) :=

gj 7→


fj if αj = 1 ∨ (β = 0 ∧ j = µα)∨

(β = −2 ∧ α 6= 0n ∧ α−j = 1)
kj otherwise

kj 7→

{
gνα|j if j < να|j < n

p otherwise

Lemma 10 (Backend Behaviour). Let −2 ≤ β ≤ 0,
α ∈ {0, 1}n σ be a strategy s.t. σ|Bn = σB(n,α,β) where
Bn = dom(σB(n,α,β)) and σ′ := Iloc(σ). Then the follow-
ing holds:

1. ∀i : (σ(di) = ei ⇐⇒ αi = 1) and β < 0 implies:

(a) σ′|Bn = σB(n,α,−1)

(b) If α = 0n then p �σ gi, fi for all i, otherwise
gνα �σ fνα �σ p, gi, fi for all i 6= να

(c) di ≺σ hi for all i with αi = 0

(d) ei �fiσ gνα for all i with αi = 1

2. α 6= 1n, ∀i : (σ(di) = ei ⇐⇒ αi = 1 ∨ i = µα)
and β = −1 implies:

(a) σ′|Bn = σB(n,α,0)

(b) If α = 0n then fµα �σ p �σ fi for all i 6= µα,
otherwise fµα �σ gνα �σ p, fi for all i 6= µα

(c) di ≺σ hi for all i with αi = 0 and i 6= µα

(d) ei �fiσ gj for all j and all i with αi = 1 or
i = µα

3. α 6= 1n, ∀i : (σ(di) = ei ⇐⇒ αi = 1 ∨ i = µα)
and β = 0 implies:

(a) σ′|Bn = σB(n,α+,−2).

(b) gµα �σ fµα �σ p, gi, fi for all i 6= µα

(c) fµα �
hµα
σ gi for all i

(d) di ≺σ hi for all i with αi = 0 and i 6= µα

(e) ei �fiσ fµα for all i ≥ µα with αi = 1 or i = µα

(f) fµα �
hµα
σ ei for all i < µα with αi = 1

Third, we define a family of strategies σ(n,α,β) for α ∈
{0, 1}n and −2 ≤ β ≤ γα that will be proven to reflect the
complete sequence of strategies in a run of the improvement
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algorithm. Define σ(n,α,β) :=

s 7→


fµα if α 6= 1n ∧ β = γα

fνα if α 6= 0n ∧ (β < γα ∨ α = 1n)
p otherwise

r 7→

{
gνα if α 6= 0n
p otherwise

dj 7→



ej if αj = 1∨
(β ≥ γα − 1 ∧ µα = j)

s if β = −2 ∧ αj = 0
r if β = −1 ∧ αj = 0
a2j+1 if β = 0 ∧ αj = 0
aβ−1 otherwise

q ∈ Dn 7→ σD(n,β)(q)

q ∈ Bn 7→


σB(n,α,−2)(q) if β = −2
σB(n,α,0)(q) if β = γα ∧ α 6= 1n
σB(n,α,−1)(q) otherwise

Lemma 11. Let n > 0. Then the following holds:

1. ιGn = σ(n,0n,−1)

2. Iloc(σ(n,α,β)) = σ(n,α,β+1) for every α and −2 ≤
β < γα

3. Iloc(σ(n,α,γα)) = σ(n,α+,−2) for every α 6= 1n

4. Iloc(σ(n,1n,γ1n )) = σ(n,1n,γ1n )

By induction on n we can conclude that the strategy it-
eration using the locally optimizing policy requires at least
exponential time in the worst case.

Theorem 12. Let n > 0. The strategy improvement algo-
rithm requires 9 · 2n − 8 iterations on Gn using the locally
optimizing improvement policy.

We implemented an open-source parity game solver plat-
form, the PGSOLVER Collection [4], that particularly con-
tains implementations of the strategy iteration due to Vöge
and Jurdziński [17] as well as the variant by Schewe [13].
Benchmarking both algorithms with Gn results in exponen-
tial run-time behaviour as can be seen in Figure 6 (note that
the time-axis has logarithmic scale) 2.

6. Conclusion

We have presented a family of games on which the de-
terministic strategy improvement algorithm due to Vöge

2Both algorithms were benchmarked on a refined version of Gn that
comprises only linearly many edges and also works for Schewe’s improve-
ment policy.
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Figure 6. The Benchmark

and Jurdziński requires exponentially many iterations. Al-
though the games presented here comprise a quadratic num-
ber of edges, the construction can be refined s.t. there are
only linearly many edges.

Vöge mentions in his PhD thesis [16] that it is probably
much more convenient for strategy improvement algorithms
to be performed on games with an outgoing edge degree
limited by two. A simple transformation results in a family
of games with out-degree limited by two that also requires
exponential time to be solved.

There are other possibilities to select the initial strategy.
Randomizing the initial strategy, for instance, is another
popular choice: we note without proof that starting with a
randomized strategy, the expected number of iterations on
Gn is also exponential.

The games presented here can be also applied to show
exponential lower bounds for Puri’s algorithm for solving
mean and discounted payoff games by using the standard
reductions [10, 19].

Moreover these games can be refined s.t. an exponential
lower bound for both variants [13, 11] of Schewe’s strategy
iteration can be shown. In particular, one has to replace the
simple cycles representing the bits of the counter by larger
cycles consisting of more player 0 nodes connected to the
deceleration lane. The overall construction regarding decel-
eration lane and backend structure remains quite the same.

Although there are many preprocessing techniques that
could be used to simplify the family of games presented
here - e.g. decomposition into strongly connected compo-
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nents, compression of priorities, direct-solving of simple
cycles, etc. - such procedures cannot be implemented to fix
the bad performance of the strategy iteration on these games
since all known preprocessing techniques can be fooled
quite easily without really touching the inner structure of
the game.

The same applies to simultaneous solving using different
algorithms due to the fact that it is not very complicated to
combine different worst-case games in such a way that each
algorithm that tries to solve the whole game is slowed down
by the part that belongs to its worst-case example.

Parity games are widely believed to be solvable in poly-
nomial time, yet there is no algorithm known that is per-
forming better than super-polynomially. Vöge presented his
strategy iteration technique in his PhD thesis nine years ago,
and this class of solving procedures is generally supposed to
be the best candidate to give rise to an algorithm that solves
parity games in polynomial time since then. Unfortunately
the two most obvious improvement policies, namely the lo-
cally and the globally optimizing technique, are not capable
of doing so.

We think that the strategy iteration still is a promising
candidate for a polynomial time algorithm, although it is
possibly necessary to alter more of it than just the improve-
ment policy. The main problem of the algorithm (and the
policies) is that reoccurring substructures are not handled in
such a way that a combination of edges that was profitable
before is applied again. The reason is that possibly not all
edges belonging to that profitable combination are improve-
ment edges, hence that combination cannot be selected in a
single improvement step.

Therefore we believe that it would be an interesting ap-
proach to add some kind of memorization of profitable sub-
structures that can be applied as a whole under certain con-
ditions that are weaker than requiring all edges of the sub-
structure to be improvement edges but strong enough to en-
sure the soundness of the algorithm.

Regarding randomized strategy improvement variants,
we think that it should be possible to alter the games pre-
sented here in such a way that the expected run-time is
super-polynomial. One has to ensure that very profitable
strategy updates – like setting bits in Gn – are very un-
likely to happen by chance. This should be achievable by
replacing the simple cycles with cycles consisting of lin-
early many nodes having edges to the deceleration lane in
combination with similar obfuscation techniques that are to
be applied to the backend structure.

Acknowledgements. I am indebted to Martin Lange and
Martin Hofmann for their guidance and numerous inspiring
discussions on the subject.
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A. Appendix

Lemma 5:

Proof. The “only-if”-part is trivial. For the “if”-part, we
need to show that the sink seeking-property holds. Let σ be
a player 0 strategy with ΞιG � Ξσ , w be an arbitrary node
and u be the cycle component of Ξσ(w). Due to the fact
that G is completely won by player 1, u has to be of odd
priority. Also, since ΞιG � Ξσ , it holds that Ω(u) ≤ Ω(v∗)
implying u = v∗ by the sink existence-property.

Corollary 6:

Proof. Let uσ denote the path component of Ξσ(u). Let
m(a,b) := max<(aσ4bσ) and m(c,b) := max<(cσ4bσ).
Then the following holds:

max
<

(aσ4cσ) = max
<

({m(a,b)}4{m(c,b)})

= max
<

({p}4{q}) =: r

1. is obvious. Regarding 2., it holds by assumption that
p > q, i.e. r = p. Since p ∈ aσ iff p ∈ V⊕ it follows that
a �σ c, hence a �pσ c.

Lemma 8:

Proof.

1. Note that the only nodes owned by player 1 with an
out-degree greater than 1 are e0, . . . , en−1. Consider
the player 1 strategy τ which selects to move to hi
from ei for all i. Now it is the case that Gn|τ con-
tains exactly one cycle that is eventually to be reached
no matter what player 0 does, namely the self-cycle at
q which is won by player 1.

2. The self-cycle at q obviously is the 1-sink since it can
be reached from all other nodes and has the smallest
priority 1. Since qEq is the only cycle in Gn|ιGn , q
must be the cycle component of each node valuation
w.r.t. ιGn .

Lemma 9:

Proof.

1. Clearly, it is more profitable to move to r than to s. It is
most profitable, however, to eventually reach r through
c.

2. β > −2 implies that all nodes of the lane directly reach
r instead of s. Note that s �σ r implies that s has a
better valuation than all nodes in the deceleration lane.
Therefore, all nodes of the deceleration lane improve
to move to s.

3. It is most profitable to reach r by assumption, all other
nodes move to s.

4. It is more profitable to eventually reach r through c
than directly moving to c, therefore node aβ is the most
profitable node in the lane.

5. Due to the fact that the most significant node in the
symmetric difference of the path valuations of r and s
has to have a higher priority than all nodes in the lane.

Lemma 10:

Proof. Let i < n. (i) Note that it is most profitable to move
from gi to fi iff σ(di) = ei. (ii) Also note that in order to
reach a node w that is directly reachable by ki, it is only
profitable to move to node gi (instead of directly moving to
w) iff gi moves to fi and di moves to ei.

1. Let i < n. (a) and (b) can be shown by using (i) and
(ii).

(c) The path associated with Ξσ(di) eventually
reaches the same node σ(ki) reaches, but passes
on its way only priorities below Ω(hi).

(d) The path associated with Ξσ(gνα) eventually
reaches σ(ei) but on its way only passes prior-
ities below Ω(fi).

2. Let i < n. (a) and (b) can be shown by using (i) and
(ii).

(c) The path associated with Ξσ(di) eventually
reaches the same node σ(ki) reaches, but passes
on its way only priorities below Ω(hi).

(d) The path associated with Ξσ(gνα) eventually
reaches σ(ei) but on its way only passes prior-
ities below Ω(fi).

3. Let i < n. (a), (b) and (c) can be shown by using (i)
and (ii). Note that αi = 1 ∨ i = µα is equivalent to
α+
i = 1 ∨ αi = 1.

(d) The path associated with Ξσ(di) eventually
reaches the same node σ(ki) reaches, but passes
on its way only priorities below Ω(hi).

(e) The path associated with Ξσ(fµα) eventually
reaches σ(ei) but on its way only passes prior-
ities below Ω(fi).

(f) The path associated with Ξσ(di) eventually
reaches the same node σ(kµα) reaches, but
passes on its way only priorities below Ω(hµα).
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Lemma 11:

Proof. We will implicitly make use of Corollary 6.

1. Obvious.

2. Let σ := σ(n,α,β), σ′ := Iloc(σ) and σ∗ :=
σ(n,α,β+1).

• Case β < γα − 1 or α = 1n: Lemma 10 (1a)
implies that σ∗|Bn = σ′|Bn , (1b) implies s �σ
r, σ∗(r) = σ′(r) and σ∗(s) = σ′(s). Hence,
Lemma 9 (1) implies that σ∗|Dn = σ′|Dn .
It remains to show that σ∗(di) = σ′(di), hence
let i < n.

– If αi = 1, it follows by (1d) that σ∗(di) =
σ′(di).

– Otherwise, if αi = 0, it follows by (1c) that
di ≺eiσ ei. Then, if β = −2, σ∗(di) =
σ′(di) follows by Lemma 9 (3), and if β ≥
−1, σ∗(di) = σ′(di) follows by Lemma 9
(4).

• Case β = γα − 1 and α 6= 1n: Lemma 10 (2a)
implies that σ∗|Bn = σ′|Bn , (2b) implies r �σ
s, σ∗(r) = σ′(r) and σ∗(s) = σ′(s). Hence,
Lemma 9 (1) implies that σ∗|Dn = σ′|Dn .
It remains to show that σ∗(di) = σ′(di), hence
let i < n.

– If αi = 1 or µα = i, it follows by (2d) that
σ∗(di) = σ′(di).

– Otherwise, if αi = 0 and i 6= µα, it follows
by (2c) that di ≺eiσ ei. Then it follows by
Lemma 9 (4) that σ∗(di) = σ′(di).

3. Let α 6= 1n, σ := σ(n,α,γα), σ′ := Iloc(σ) and σ∗ :=
σ(n,α+,−2). Lemma 10 (3a) implies that σ∗|Bn =
σ′|Bn , (3b) implies σ∗(r) = σ′(r) and σ∗(s) = σ′(s)
(since µα = να+ ) and (3c) implies that s �hµασ r.
Hence, Lemma 9 (2) implies that σ∗|Dn = σ′|Dn .

It remains to show that σ∗(di) = σ′(di), hence let i <
n. Since s �hµασ r, it clearly follows by Lemma 9 (5)
that s �σ aj for all j.

• If αi = 0 and i 6= µα, it follows by (3d) that
ei �eiσ di. Since s �hµασ r, it holds that s �hµασ

ei, hence σ∗(di) = σ′(di).

• If i ≥ µα and αi = 1 or i = µα, it follows by
(3e) that ei �fiσ gνα and hence ei �σ s which
implies σ∗(di) = σ′(di).

• Finally, if i < µα and αi = 1, it follows by (3f)
that fµα �

hµα
σ di implying that s �σ di and

hence σ∗(di) = σ′(di).

4. Let σ := σ(n,1n,γ1n ) and σ′ := Iloc(σ). Lemma
10 (1a) implies that σ|Bn = σ′|Bn , (1b) implies
σ(r) = σ′(r), σ(s) = σ′(s) and r �σ s. Lemma 9
(1) implies that σ|Dn = σ′|Dn . Finally (1d) implies
σ(di) = σ′(di) for all i (due to the simple fact that
fi is more significant than all nodes belonging to the
deceleration lane).

Theorem 12:

Proof. Let f(n) denote the number of iterations the algo-
rithm requires on Gn. By induction on n and Lemma 11 the
following can easily be shown:

f(n) = a+
∑
α∈In

d(µα) + e(n)

where a = 6, e(n) = 2n + 2, d(i) = 2i + 7 and In =
{0, 1}n \ {0n,1n}.

It can be directly inferred that f(1) = a + e(1) = 10.
Since d(i) does not depend on n, f(n+1) can be expressed
in terms of f(n):

f(n+ 1) = a+ 2(f(n)− a− e(n)) +
d(0) + d(n) + e(n+ 1)

= 2f(n) + 8

By induction on n it is easy to see that f(n) = 9·2n−8.
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